During the early 1990s the BAA (formerly the British Airports Authority) began
to look at its environmental policies, among these, the issue of treating airfield
surface runoff contaminated with de-icant materials such as glycol. At Heathrow
for example, polluted water was treated by balancing and aeration before being
discharged into the River Crane. A three-year study of its chemical and biological
water quality established this discharge could have a potentially negative effect
on the watercourse. Glycol can de-oxygenate the water, setting back the river’s
ecology every winter. In view of this risk, Heathrow set about looking at a
range of technologies to combat the problem.
Results showed that the reed beds treated glycol effectively, and provided
a principle whereby BAA could size the system required. It was then costed and
put in amongst the other technologies being reviewed. When the options were
finally compared, reed beds proved most effective in terms of treatment performance
and cost. Other technologies faced problems or were too expensive. Reverse osmosis
for example, would have problems because of the impact hydrocarbons would have
on the system. Reed beds demonstrated they could deal with glycol, hydrocarbons
and metals which come off aircraft tyres and engine exhausts.
Heathrow Airport embarked on the construction of a wetland treatment system,
bringing together a team to develop an innovative and environmentally sustainable
scheme. Runoff from a large part of Heathrow Airport is drawn from two catchment
areas, east and south. These produce a combined volume of nearly 90,000 m³.
Potentially contaminated water is balanced and aerated before passing through
one of two types of reed bed. Rafted reed beds are adopted for high hydraulic
loading rates. Their performance is not compromised by larger quantities of
water as rafts simply rise with the flow. There are also sub-surface reed beds,
giving rise to high level microbiological treatment.
Partners on the scheme were Laing, TPS consult, Amec, Middlesex University,
Binnie Black & Veatch, Turner & Townsend, Chris Blandford Associates
and Penny Anderson Associates. These include consultants and contractors who
are part of BAA’s framework agreement as well as specialists. Peter Worrall,
technical director at Penny Anderson Associates, explained how every member
of the team was involved from the earliest stages of design, a critical factor
when it came to construction. He believes that working as an integrated team
helped reduce costs from £28M to £19M. The success of partnering
was partly dependant on a no-blame culture, which fuelled team development and
innovation.
Goal Scoring
Part of the team’s goal was to drive sustainability at every opportunity. This
included the use of recycled materials whenever possible and the adoption of
certain building techniques. It took 18 months before the team found the perfect
material for the sub-surface reed beds. They considered concrete, recycled brick
and furnace slag before choosing gravel. The gravel used was being excavated
for the construction of an olympic-size rowing lake. Although it is a non-renewable
resource, the team saw it as a form of recycling. Innovative building techniques
included the hire of steel formwork to assist with the construction of concrete
walls. Traditionally, used timber in formwork is thrown away afterwards, whereas
the steel frame was reusable. The team also used Bentonite, a clay powder, instead
of concrete to line the reed beds. Bentonite hydrates and expands when water
is added, to create a seal on the reed bed floor. Using concrete would have
generated greater energy requirements and the production of CO².
Completed in summer 2001, the scheme has won awards for sustainable development
and has been praised for its novel engineering and management techniques. In
addition, the logistical challenges faced by the team led to a series of innovations.
One of these involved the balancing reservoir in the eastern catchment and the
need to separate clean and dirty water. Building a second reservoir was not
an option as the site is an area of metropolitan importance for nature conservation.
This led to the development of a floating, mobile, butyl curtain which splits
the reservoir and allows dirty and clean water to be stored together. Its installation
created a new set of logistical problems for the contractors who had to find
the most practical way of handling the 200m-long curtain.
Transferring the water from the eastern reservoir to the newly constructed
wetlands facility also presented a challenge. The obvious solution would have
been to lay a 3km pipeline, but this would have caused considerable disruption
to the A30. Instead, the team decided to tap into an existing fire main, which
lies on the perimeter of Heathrow Airport, and draw off the water at an appropriate
point near the reed bed system. The process took 18 months to develop as it
was vital the fire fighters’ working capacity was not compromised. A series
of trials took place to look at whether the water would affect fire fighting
equipment or the foam used. Results showed it did not alter the way the fire
main operated and therefore it provided a relatively inexpensive way of transferring
the water. In sustainability terms it was ideal.
In the lower reservoir on the eastern side, where clean water would be discharged
to the River Crane, it was important for the team to ensure the water was in
optimum condition, should any minor pollution occur. A series of wind turbines,
a mechanism derived in the US, was installed for aeration treatment. The devices
resemble large, floating drums, which revolve even at low wind speeds, pulling
water from the bed of the reservoir to the surface. At the surface the natural
absorption of oxygen can occur and the whole lake becomes well oxygenated without
the need for electrical equipment or maintenance requirements.
At present there are no consent standards imposed upon the reed bed system.
It will be closely monitored for three years after which time an appropriate
standard will be agreed with the Environment Agency. “We modelled the quality
and volume of water coming off the airfield and took the very worst case of
de-icant pollution,” said Worrall, “That was over 1,000 BOD. It can
be reduced without a problem to 40 BOD.” This self-imposed standard is
a guide. Once in ten years the system will have to work at its optimum to get
the water quality to 40 BOD. Generally results will be substantially lower.
Worrall estimates below 10 BOD, maybe even 5 BOD.
BAA is still waiting for evidence to prove how effective the reed beds will
be. The system only went on-line on December 3, 2001. Worrall explained “It
is an event led process. In the first week there were de-icant events, but not
major ones. There hasn’t been much rainfall, so there has not been much wash
off into the system.” Initial results have been positive, but there is
still some way to go before some people in the industry will be convicned of
reed bed technology. “With a full winter’s worth of operational data we
will be in a position to demonstrate the viability of this approach to surface
water management at airports,” said Worrall.
© Faversham House Ltd 2023 edie news articles may be copied or forwarded for individual use only. No other reproduction or distribution is permitted without prior written consent.
Please login or Register to leave a comment.