Pollution in many forms is a major issue for a broad range of industries. Keeping
tabs on these harmful substances is becoming increasingly important as legislation
gets tougher and associated clean-up costs and penalties get higher. This is
where biosensors mean business.
authenticating raw materials or high value goods using biological marking systems.
With so many advantages, it is small wonder that the worldwide market in biosensors
has trebled in the past four years and is now worth some £1bn.
Internal workings
A typical biosensor consists of a biological component (e.g. an enzyme, antibody
or micro-organism) and an electronic device (the transducer) that converts the
biological signal into a measurable output.
The biological part of the sensor reacts with the substance of interest to
produce a physical or biochemical change, such as light or colour, that is detected
and converted to an electrical signal by the transducer. The amplifier increases
the intensity of the signal so that it can be readily measured. These components
are usually housed within a single portable unit that can be placed at fixed
strategic locations.
The biosensor display can be tailored to meet the needs of the application
and can range from a simple output such
as switching on or off a light-emitting diode to a quantitative result displayed
in graphical format.
Early warning
Biosensors have caught on in the water industry because they are simple to use,
cost much less than conventional systems and can act as a back-up to existing
chemical detection methods. In addition, biosensors produce results in minutes
rather than days and are not confined to detecting a small range of known contaminants.
They react to general toxicity and provide an all-important early warning of
possible pollution. With regular use, they can lead to significant improvements
in quality monitoring and provide an auditable track record of water quality.
Biosensors also cut analysis time down to a few minutes, compared to the days
needed to obtain results from a conventional laboratory test. They are simple
to use and are cost-effective, making them attractive to smaller companies.
Biosensors can offer significant benefits for screening large quantities of
samples, reducing the need to send every sample for laboratory analysis.
Already well established in the pharmaceutical and medical industries – where
glucose and pregnancy testing kits are the best known examples – biosensors
are now catching on in industries such as engineering, textiles, water, food,
drink and chemical production.
For nearly 30 years, it has been known that a bacterium, Vibrio fischeri, found
in marine environments emits visible light or ‘bioluminesces’. When V. fischeri
is in a state of metabolic health, the level of light emitted is high and under
increasing amounts
of metabolic stress, the amount of bioluminescence drops in a predictable and
reproducible manner.
This provides a powerful tool for rapidly identifying ‘hot spots’ of toxicity
and eliminating uncontaminated areas. The cost per sample of using bioluminescence
is approximately one tenth of conventional methods.
Using bioluminescence to determine the presence of toxins has been employed
in the pharmaceutical sector for several years to rapidly screen for acute toxicity
of lead compounds during the early stages of drug development. Increasingly,
the approach
is being adopted in the environment industry, mainly in the water treatment
sector, where it is used as a rapid, low cost direct toxicity assessment technique.
Xerox chose a biosensor system to monitor wastewater from a new production
process at its UK manufacturing plant in Mitcheldean, Gloucester-shire. The
company wanted a simple way to measure the COD of wastewater to meet consent
limits. The solution was a hand-held device that measures light from an enzyme-dependent,
chemi-luminescent reaction.
“Using conventional chemical methods, a result can take up to three days
to obtain,” says Chris Marriott, Health and Safety Officer for Xerox Environment,
“Using the biosensor, a result can be obtained within an hour. The results
are of sufficient accuracy to enable us to discharge our waste confident in
the knowledge that the consent is not being breached.”
Pollution control
Preventing pollution is not the only use biosensors can be put to as they can
also indicate when to reduce dosing and additives safely, leading to substantial
savings in material costs. For example, during paper manufacture, pulp is regularly
dosed with biocides to control the level of bacterial contamination.
With biosensors, the bacterial content is continually monitored and biocides
are added only as and when required. Not only does this reduce costs and pollution,
it also improves paper quality.
The technology can be applied in any industry where the microbiological integrity
of water or air has an impact on the end-product quality. Paint manufacturers
use similar systems where bacterial contamination could mean the loss of up
to three weeks’ production.
Toxicity detection
Whereas conventional chemical monitoring systems test for known contaminants,
biosensors are capable of detecting general toxicity in soil, water or air.
In the case of land contamination, Remedios has developed a system to produce
a computer-generated map summarising site problems.
The system was recently used by property consultant Chesterton International
to assess a Scottish site with a history of various industrial uses. High levels
of contaminants were present but the exact distribution of the pollution was
unknown. Using the biosensor, an assessment of the site was made in less than
ten working days and an area of toxicity overlooked by three previous reports
was discovered.
Chesterton International Director Eric Shearer said, “I had seen the commercial
value of the site years ago. Remedios, in just a few weeks, showed me the true
value of the site in a presentation that even I could understand.”
As well as assessing general toxicity, biosensors can home in on specific compounds,
using an antibody, enzyme or even DNA fragment to detect the presence of a target
substance. A further advantage of biosensors is their extraordinary sensitivity
and accuracy. They can match the sensitivity of the human palate in detecting
minute quantities of taste-altering contaminants, which explains their widespread
use in the water and food and drink industries.
An exciting development is the use of biological tracers (usually DNA) to pinpoint
the source of an effluent by marking it with a tag where it is being discharged.
As environmental legislation becomes more stringent, such tracer technology
will become increasingly widely used.
The same technology can be used to add identifying DNA markers during the manufacture
of high-value items, such as perfumes and designer clothes, to help detect counterfeit
items. Biosensors really do mean business and their range of applications set
to increase.
© Faversham House Ltd 2023 edie news articles may be copied or forwarded for individual use only. No other reproduction or distribution is permitted without prior written consent.
Please login or Register to leave a comment.