Atmospheric pollutant concentrations are a complex function of emissions strength,
distribution, meteorology and its influence on dispersion, and atmospheric chemistry.
Ground-level concentrations of pollutants emitted from roads and elevated point
sources can be reasonably well predicted, but currently the tools for estimating
concentrations of pollutants where there are many contributory sources are in
need of further development.
The model, developed in collaboration with the Meteorological Office, is based
on three main components. The first is a predictive model of meteorological
factors such as wind speed, direction and atmospheric temperature profiles.
This is coupled to a dispersion model in which pollutant emissions are described
as parcels of air which carry pollutants, and which become dispersed through
atmospheric motions. The third part, which has been the main focus of the project,
has been the incorporation of detailed chemistry describing the formation and
removal of secondary pollutants.
In order to test the predictive capabilities of the model, air pollutant concentration
data have been collected in summer and winter campaigns. Data collection has
gone far beyond the conventional air pollutants measured in monitoring networks
to include a far wider range of volatile organic compounds, oxygenates and short-lived
reactive free radical species. These can be used to test not only the final
predictions of the model, but also the suitability of the chemical mechanisms
within the model. One unexpected finding has been that the oxidising capacity
of the urban atmosphere is far higher in the winter than had previously been
expected. These studies, involving the Universities of Birmingham, Cambridge,
Leeds and East Anglia have led to major advances in understanding urban atmospheric
chemistry at a fundamental level.
Particle characteristics
Particles originating from vehicle exhausts and road surface dust can penetrate
deep into the lungs and are known to cause serious health effects and be implicated
in asthma episodes. While emissions from exhausts are well defined, the characteristics
of particles on the surface of roads, the emission rates from tyre/road interactions
and the re-suspension of road dust is not well understood. Another URGENT project
at the University of Birmingham is studying these interactions.
Increased understanding
Work at the University of Leeds has resulted in the development of a model that
provides a more accurate picture of the concentrations of emissions from chimneys
in urban areas, or elsewhere, taking into account land use and the local topography.
User-friendly software has been developed that can be used by people in industry
with only a limited knowledge of atmospheric modelling who may need to increase
their understanding of what happens to their emissions.
Although many studies have shown that there is a clear relationship between
increased levels of airborne particles and adverse health effects, the underlying
mechanisms are poorly understood. Since particulate air pollution is a complex
mixture of components, highly heterogeneous and often site specific, it is a
reasonable assumption that different cocktails of airborne particles at different
sites are likely to possess different degrees of toxicity in the lungs. A project
at the University of Cardiff has set out to test this by characterising and
determining the toxicity of material collected from a number of sites in South
Wales, including Cardiff City (urban), Port Talbot (industrial/urban), and an
opencast coal mine (industrial/rural). One of the interesting conclusions so
far from this work is that the dust generated in the vicinity of the opencast
mine shows negligible bioreactivity in the lung and does not appear to be of
concern.
A joint project involving the University of Lancaster and the Centre for Ecology
and Hydrology in Edinburgh has shown that close to 100 tonnes per year of PM10
particulates are deposited on trees in the West Midlands, and that deposition
on woodland is between two and five times faster than to grassland, such that
a 25 per cent increase in the number of trees would increase deposition by 15
per cent. There is a balance to be struck between this benefit, which is very
much a local effect, and the emission of volatile organic compounds, (to varying
extents depending on species), which may result in the production of ozone and
particles at some distance downwind. Nevertheless, planting trees in pollution
hot spots may have more benefits than their potential to absorb carbon dioxide
and their aesthetic value.
© Faversham House Ltd 2023 edie news articles may be copied or forwarded for individual use only. No other reproduction or distribution is permitted without prior written consent.
Please login or Register to leave a comment.