Creating the right environment for success

Alain Vidal of IPTRID - International Programme for Technology & Research in Irrigation and Drainage - reports on a project which is assessing the technologies, policies and practices required for efficient water conservation


Continue Reading

Login or register for unlimited FREE access.

Login Register

In the Mediterranean region, agriculture is considered as the sector where

the biggest volume of water can be saved as it represents around 80% of total

demand, much of it used inefficiently. However, many countries have developed

a good, anecdotal knowledge at a local level on managing their water.

Key role of agriculture

Irrigation continues to play a major role in agricultural production, and has

wide-ranging socio-economic impacts in terms of marketing and exporting products;

in terms of rural development versus migration to urban areas; and the environmental

degradation of water quality.

Around the Mediterranean, large scale irrigation development began to take

place after World War II and accelerated in the 1960s. The total area irrigated

in the region has increased from about 6.0-8.0 million ha between 1960 and 1980

and now is reaching 11.8 million ha.

Mediterranean countries, like many others, benefitted from the post-war technological

advances in hydraulics, automation and construction; and in water-application

techniques at a local farm level. The advanced techniques of canal regulation

adopted in the region should have made it possible to deliver water on demand

for farmers – a prerequisite to achieve the highest level of agricultural productivity

and to meet precise crop requirements.

However, poor implementation and management have seriously limited expectations

on land and water productivity. Today, there are several areas of intervention

planned in terms of policies for water and food supply:

  • water policy reforms
  • irrigation management transfer
  • increasing role of virtual water
  • creation of a regional free-trade area

In addition, food production capacity was either horizontal or vertical – horizontal

through extension of irrigated areas based on mobilisation of new resources

or savings from existing irrigated areas; while vertical growth is based on

water productivity increases and improvement of water management.

Water resource management is the final piece in the jigsaw – making existing

resources sustainable, limiting exploitation of fossil aquifers, creating new

resources (surface and underground storage) and the use of non-conventional

sources (brackish and wastewater).

Focus on five countries

Case studies in five countries were analysed in terms of main successes as well

as limiting factors, reported water savings and crop yield increase, as well

as increase of water use efficiency:

In Jordan, farms in the Jordan Valley using drip irrigation were studied.

This showed that the use of tensiometers with drip irrigation saved 20-50 %

water, increased crop yields by 15-20% (cucumber, tomato), resulting in an increase

of water use efficiency of 44-14%. However the existing rigid irrigation system

does not presently allow the spreading of these techniques unless farmers build

their own reservoirs.

In Morocco, the case study was in the Tadla region, where the Public

Irrigation Agency (ORMVA) in partnership with private companies, promotes laser-levelled

basin irrigation, resulting in water savings of 20%, crop yield increases of

30% (cereals), and an increase of water use efficiency of 62%. This technique

is still not applicable for all areas, and the present land consolidation model

may be inappropriate for better water application and distribution within service

areas.

In Middle Egypt, the case study of Beni Ibeid command area showed that

both modernised lined mesqa (tertiary canals) and management transfer to Water

Users Associations (WUAs) have been successful – mainly because farmers were

already informally organised and working together before modernisation.

Crop yield increases of 10% (cereals, cotton) were reported, resulting in an

estimated increase of water use efficiency of 10%. However, improvements in

terms of night storage was more complex than expected.

In Turkey, a case study was conducted in the Antalya region on a system

recently transferred to WUAs, and modernised using the drip, sprinkler and California

system. This combined system saw water savings of 34%, and resulted in an estimated

increase of water use efficiency of 51%. Further progress might be limited by

the ability of many WUAs to modernise their systems and improve performance.

In Tunisia, Public Irrigation Agencies (CRDA) and WUAs are managing

drip, sprinkler and modernised surface irrigation. Public water saving programmes

and other incentives resulted in estimated water savings of 25% and increase

of water use efficiency of 33%. Stronger financial incentives through water

pricing and strengthening the capacity of farmers in water saving

techniques should improve the results already achieved.

Lessons learnt can be summarised as follows:

Localised irrigation is not a miracle technology. Excellent as well as poor

results were obtained from these technologies, and their adoption depends on

farmers’ capacity to finance and operate them, as well as on the type of crop

production.

Modernised surface irrigation can be a water saving technique, which can be

compared to the often less affordable drip or sprinkler irrigation. It is also

more easily adopted by farmers since it is closer to traditional practices.

An enabling environment is necessary to achieve successful water conservation

and improve water use efficiency. This should include public incentives, irrigation

management transfer to users and the involvement of the private sector to relate

the marketing of crops to water savings.

Sustainability of water management depends on carefully selected measures

that complement each other. A substantial loss in water productivity is due

to the poor quality of irrigation water service in surface irrigation systems.

Rigid delivery of water, at long intervals (as in Jordan, Egypt, Turkey), or

a land consolidation model not compatible with more liberal agriculture policies

(Morocco) precludes the adoption of water-saving application techniques and

the change from staple food to high-value water sensitive crops.

© Faversham House Ltd 2022 edie news articles may be copied or forwarded for individual use only. No other reproduction or distribution is permitted without prior written consent.

Action inspires action. Stay ahead of the curve with sustainability and energy newsletters from edie

Subscribe