Horizontal or directional drilling is a means of reducing contamination in
polluted soils and groundwater by providing a conduit for sub-surface
fluids. The technique consists of using directional drilling rigs so that
curved wellbores of almost any trajectory can be created under the
contaminated site to remediate plumes of contaminated groundwater. This is
dependent on characterising the site hydrology for the well positioning
together with determining the geology and geo-chemistry of the location.
The technique has been widely used in the US where pollutants such as
ethylene dichloride, monochlorobenzene, lime (with leachates of 12 to 13 pH)
mixed with chlorinated asbestos and lead, chlorofluorocarbons, TCE, raw
petroleum and petroleum hydrocarbons have been removed and/or treated. In an
application involving petroleum hydrocarbons, directional wellbores were
used to prevent their migration into the water table.
The great advantage of the technique is that it can be used to decontaminate
land on which buildings still exist. Curved wellbores can be driven under
site buildings or drilled under structures surrounding cleared sites.
Horizontal drilling is also able to remove pollutants from the much wider
area that has been contaminated outside the site boundaries.
The Charles Machine Works Inc, makers of the Ditch Witch trenchless
equipment, has developed a specialist horizontal drilling rig that consists
of a carriage spindle which provides the thrust and torque to a dual pipe
system to create the wellbores. The rigs are marketed in the UK by the
Swansea company Euro-Equipment.
The outer (or directional control [DC]) pipe, which is connected to the
outer casing (or steering tool) of the bottom hole assembly (BHA) controls
hole deviation and the weight on bit. The inner pipe provides torque to the
drill bit. Thus the spindle carriage can turn the two pipes in opposite
directions at variable speeds to guide the BHA which drives the drill bit
via the inner pipe. To vary direction, the rotating DC pipe is stopped, the
steering tool is used to set the direction and drilling continues with the
rotation of the DC pipe only being resumed when the boring is to continue in
a straight line.
Although, blind wellbores can be formed with horizontal drilling, the
continuous wellbore is more often preferred as the screens can be pulled
back though the adit from the opposing breakthrough position.
The trajectory is continuously monitored by sensors to ensure that it is
accurately positioned within the plume and to ensure that the continuous
wellbore breaks the surface at the required position. Location and guidance
systems consist of electronic packages behind the cutting head which enables
the end of the drill to be located, to provide the azimuth and inclination
of the BHA and the orientation of the drill face.
Various systems exist including one that is based on three magnetometers to
measure the position (or azimuth) of the earth’s magnetic field and three
accelerometers to measure the inclination of the tool within the earth’s
gravitational field. Data is processed at the surface to give real-time
location of the BHA. A second system is based on three gyroscopes which are
aligned to true north prior to drilling so that they can then detect any
deviation for the surface computer to calculate azimuth, inclination and
drilling tool orientation. The third method relies on a battery-powered
sonde transmitting radio signals to the surface where a hand-held unit can
determine the position of the electronic beacon, calculate its depth and
display drill-face orientation.
Once the wells are in place, various methods of remediation can be used. Air
can be injected into the contaminated underground water via the screens.
This volatises the contaminants and removes them to a specific zone known as
the Œvadose zone’ for treatment or removal. This procedure, known as Œair
sparging’, is often used in conjunction with vapour extraction to draw out
contaminated air. The horizontal wells can also be used to supply nutrients
to micro-organisms injected into the contaminants to render them harmless as
a means of bio-remediation. More simply, the contaminated fluids can be
pumped, via the screens, treated and returned to the environment when
remediation is complete. A recent technique has been to inject carbon
dioxide via the screen which creates a triple reaction: The gas expands and
causes agitation near the well screen which forces the CO2 into the polluted
plume; the water temperature drops and carbonic acid is formed.
Although most of the technology for horizontal drilling has come from the
US, one development that was evolved in the UK was the Terrafilter screen
patented by the British company Drilling Equipment Manufacturing Company
(Demco). Demco originally developed the Terrafilter for collector wells in
Africa and the Far East to exploit water from wadis and alluvium flood
plains but it has been adapted for directional drilling by Bedrock
Enterprises in the US where it is known as Hydroquest.
In conventional boreholes, screens are surrounded by a gravel pack which is
simply poured into the borehole and sinks under gravity to act as a sand
filter. The Demco solution was to design a filter which could be attached to
the screen and therefore inserted horizontally. These filter mesh screens
provide large open areas to let in the maximum amount of water while
preventing the ingress of fine particles.
They can be fitted to any type of base pipe although plastic with an 1/8
inch or 120 slot width over 20 per cent open area is normally used. The
three stage filter consists of inner and outer coarse meshes sandwiching the
filter mesh geo-fabric. The inner coarse mesh acts mainly as a conducting
system for the water filtered by the fabric layer. This facilitates the
movement of water from the filter fabric interface to the receiving slots in
the base pipe. The integral ribs in this layer of plastic material form a
vast network of water conducting channels oriented in such a way as to
ensure equal distribution of water to the receiving slots. The outer coarse
mesh merely protects the two inner meshes from damage during transportation
and installation.
The heart of the filter is the filter mesh fabric, chosen from sieve
analysis, to suit the particle size of the aquifer. Even very fine fabric
meshes have open areas greatly exceeding the 20 per cent open area of the
base pipe. Finally, a heat-shrink seal prevents the three-layered mesh from
migrating along the base pipe when it is transported or installed.
© Faversham House Ltd 2023 edie news articles may be copied or forwarded for individual use only. No other reproduction or distribution is permitted without prior written consent.
Please login or Register to leave a comment.