First, a granular binder containing products which react with carbon is
added to the contaminated soil, following which CO2 is pumped into the
mixture. The three components rapidly combine to produce a cement that is
very stable, and although a marginally more expensive process, the land can
then be used for development more quickly, thereby reducing overall costs
and the need to build on greenfield sites.
Dr Hills, a senior research fellow at the Medway University Campus, told
IEM: ‘People have been looking at carbonisation, based around hydrolic
cements, as a means of solidification and stabilisation for 20 or 30 years.
The difference is that the new binder systems consume larger amounts of CO2.
As such, as a by-product of the process, there exists the potential to
recycle large quantities of the gas rather than release it to atmosphere.’
Recent work
‘I think it is important to stress that our more recent work has shown that
we can make our binder system largely out of waste materials, i.e. with more
environmentally sound materials than in our first experiments, as well as
having the potential to bind larger quantities of CO2. For example, one of
the binders can consume more than 50% of its dry starting weight in CO2. The
CO2 is precipitated as a solid carbonate which encapsulates waste materials.
In addition, the pH environment is enhanced and insoluble
pollutant-carbonate salts are formed. Thermodynamic modelling studies (which
are underway) demonstrate the ‘lower’ energy state of a range of pollutant
carbonate salts in support of this approach.
‘Treated soils can be compacted using soil engineering techniques and be
ready for development in minutes rather than days or weeks. Therefore, there
exists the prospect of using waste materials in the binder together with
large quantities of CO2 to treat contaminated land and hazardous wastes.
This is the closed loop.’
The technology, which can be used on its own or to complement existing
ground treatment techniques, is currently at development stage with a pilot
project planned to treat 100m3 of soil at a site owned by one of the
companies behind the industrial consortium bringing the technology to
market. Commercial availability is expected within the next year.
The University of Greenwich is actively seeking industrial
co-operation/support in order to commercialise its inventions. It has
patented the process and has a wider research programme in operation. A
recent further patent protects several other products and processes
utilising carbonation technology.
© Faversham House Ltd 2023 edie news articles may be copied or forwarded for individual use only. No other reproduction or distribution is permitted without prior written consent.
Please login or Register to leave a comment.