Redefining dry weather flow

As a concept, dry weather flow (DWF) has existed for more than 30 years. In the context of sewage treatment, its intended use, in conjunction with quality parameters, is to define the load that can be assimilated by the receiving environment.

By defining the base load, it is also a yardstick by which population growth in a catchment can be identified. It is a key parameter used by the Environment Agency (EA) in setting consents to discharge. And, with recent improvements in flow measurement within the industry, it is likely to attract increased regulator attention for the foreseeable future.

It is therefore important that DWF can be robustly, reliably and consistently measured. Unfortunately, this is not currently the case. This article discusses the work under UKWIR project WW21/D to develop an alternative measure of DWF. Also, it summarises the regulatory progress towards adoption of the new measure, and highlights other flow-related research needs that have recently been identified.

Background

The current definition of DWF was first published in the Institute of Water Pollution Control Glossary in 1970. It is defined as “the average daily flow to the treatment works during seven consecutive days without rain (excluding a period which includes public holidays) following seven days during which the rainfall did not exceed 0.25mm on any one day”.

To date, there has been no systematic EA assessment of DWF compliance due to the generally poor availability of validated flow data. Recently imposed requirements for flow monitoring and reporting mean that this data is now becoming available, and EA assessment and reporting of flow compliance is anticipated this year.

DWF is used in the setting and enforcement of effluent discharge consents, for WwTWs design, and to determine the base flow for use in sewerage modelling. In consent setting and enforcement, DWF is used alongside quality limits as a means of controlling the pollutant load discharged to the watercourse. It is also used in determining the flow at which discharges to storm tanks will be permitted by the consent (flow to full treatment, FFT).

In WwTWs design, the main considerations are the incoming BOD load, and the mean and peak flows to treatment. DWF may still be used in the estimation of the latter flow parameters but this would ideally be within the context of a more complete characterisation of wastewater flow and quality.

In sewerage modelling, DWF is used to determine the base flow of domestic and industrial wastewater to be applied at model nodes. Best practice requires the separate estimation of the individual DWF components, with infiltration being estimated either from infiltration surveys or detailed analysis of long-term outfall flow records.

Problems with current definition

There are a number of problems with the current definition of DWF. The opportunities for measuring DWF are limited by the rarity of suitable dry periods in the UK, as illustrated in Figure 1.

Analysis of rainfall data collected within the UKWIR project indicated that only around 62% of works-years contain a qualifying period for calculation of DWF. Seasonal variations in DWF occur, particularly where infiltration is significant. It is of particular concern that DWF values derived from winter dry periods can lead to spurious consent failures where the consented DWF has been set on the basis of summer river needs.

Representative rainfall data is not available for all WwTWs. In addition, for large catchments, spatial variations can mean that no single rain gauge is representative of the catchment.

The current method of determining DWF compliance does not take into account the inherent uncertainties in either the measurement or calculation processes.

The definition does not provide reliable information regarding the statistical distribution of flows for use in consent setting calculations. The current definition makes no specific provision for unusual catchments that have high seasonal variations, for example due to tourism or food processing industries. There is no theoretical link between the current definition and the design formula, PG + I + E. (P = population; G = per capita consumption; I = infiltration; and E = trade effluent.) This formula will continue to be important in forecasting future flows for design and strategic planning purposes.

Selection criteria

To provide a structured approach to evaluating alternative definitions of DWF, the following selection criteria were agreed by the UKWIR group:

Alternative definitions investigated

The following alternative methods were selected for comparison with the current definition of DWF:

When evaluating the performance of the current definition of DWF, both an all-year and a summer-only condition have been evaluated

Data availability

Flow and rainfall data were requested from the 11 water and sewerage companies participating in the UKWIR project, together with associated catchment information.

Some 4,447 works-years of flow data and 3,123 works-years of associated rainfall data were received from nine water and sewerage companies (Figure 2). After subjecting both flow and rainfall data to a range of validation tests (described in the following section) complete works-years of data with in excess of 75% of values complying with all validation tests (3,266 works-years of flow data and 1,803 works-years of associated rainfall data) were passed forward for use in the analysis.

Table 1 provides additional details, with one-year denoting any continuous 12-month period. Works with less than 12 months of continuous flow data were not included.

Data validation

The flow data received were subjected to the following validations:

Similarly, for rainfall data:

Analysis tools

All flow data, rainfall data and catchment explanatory factors were imported into a relational database. This database was accessed by bespoke software capable of calculating DWF values using a wide range of alternative methods.

A wide range of method variations were calculated by the software and returned to the database for analysis. Each method was applied to each data set that had passed the validation criteria defined above. Appropriate analysis techniques were applied to these results in order to assess the performance of each method. These included the following:

Further bespoke software was used to calculate various performance indicators from the method results, to provide quantitative means of assessing and comparing the performance of the many method variants considered. These included:

Results of analysis

Full details of all the results from the analysis are contained within the UKWIR report. The current DWF definition cannot be calculated for a large proportion of data sets. The current method also gives results with high year-on-year variability when using dry periods from any month of the year. If restricted to summer dry periods only, this variability is significantly reduced.

By relaxing the stringent rainfall conditions imposed in the current method, a variant can be developed which can be calculated for almost all (90%) of data sets and has only a slightly increased (+2.3%) mean. However, 45% of the data sets available for use in the analysis had no corresponding rainfall data.

A wide range of methods have been tested which do not require rainfall data, of which the 20th percentile flow (Q80) gives the best overall performance against the selection criteria. It can be calculated easily for all reasonable data sets without use of rainfall data, agrees well on average with the summer DWF calculated by the existing method (Figure 3), and exhibits significantly reduced year-on-year variability.

The fifth percentile of daily flows (Q95), which was previously a favoured statistic, gave results which were on average 14% lower than the summer DWF calculated by the existing method (and Q80). Q95 has somewhat higher year-on-year variability than Q80 (Figure 4), but in other respects has similar characteristics.

Moving average methods can be developed that give similar performance to Q80 (Figure 5) but these are more sensitive to missing or invalid data and are more complex to understand and apply.

Distribution fitting methods require a more complex calculation algorithm, but have the potential to provide a more effective check on whether effluent flows are exceeding the assumptions made when setting consents. However, these require further development and have more far-reaching implications for current practice.

Regulatory overview

From the analysis of results, based on the agreed selection criteria, the measure that emerged as the most appropriate replacement for DWF was the 20th percentile (Q80). This is in the process of being discussed formally at a national level between water companies and the Environment Agency, and will form the basis of a replacement for assessing DWF compliance. It is expected that an agreement will be reached on the regulatory principles imminently.

Key to completing this transition successfully are a number

of issues: