Sonarflex transducers offer reliable sludge blanket data

Balancing biological and hydraulic parameters in wastewater treatment can be a daunting task. Nigel Allen investigates the complex process control and automation problems associated with sludge blanket level and interface monitoring.

Accurate measurement of interface levels is a complex problem in the murky, turbid settling tank environment, and without extensive sample extraction and subsequent lab analysis it can be very difficult to obtain a clear picture of the all-important density profiles.

The sludge within the tank decreases in density as you move from the bottom of the tank towards the top water level. The densest sludge, sitting at the bottom of the tank, can range from 3,000 to more than 6,000mg/l, and in a stable tank the sludge will gradually decrease in density to around 200mg/l at the top of the column. Generally, treatment works are interested in quality sludge that has a density greater than 2,500mg/l.

Sludge at the bottom of the tank is referred to as RAS (Returned Activated Sludge). At this density it is heavy enough not to move up the tank when hydraulic or biological problems occur, and it is also dense enough to be termed good quality biomass. Thus it can be returned to the aeration lanes to help with the pre-treatment process or diverted to waste.

However, when a change occurs to the site loading, process problems can occur and operators need to know the dynamics of the different interfaces to assess and effectively control the ongoing process.

Many sonar systems struggle to provide comprehensive and reliable information under these difficult conditions because they lack the power and the correct frequency to penetrate the suspended solids.

One way of gaining a full top to bottom picture has been to use manual dipping products or a gap sensor. However, these labour intensive devices fail to provide a continuous output for trending and control. They only give a visual snapshot of the interface layers in the tanks, and have associated and undesirable health and safety issues.

Rising blanket

Traditional sonar interface monitoring systems fall short of the necessary requirements. Their frequency range and lack of power means they cannot penetrate much further than densities of about 1,200- 1,500mg/l, which means they can only identify the upper FLOC interface with any level of certainty. Based on this information, a huge and potentially catastrophic assumption is then made that the corresponding denser RAS interface tracks the FLOC interface under all conditions. This is not always the case and when imbalances occur due to changes in site loading, continuing with this assumption makes matters even worse.

If the site is using an instrument that can only monitor the lighter density FLOC layer as a basis to control the RAS pumps then, when the FLOC layer rises due to an imbalance, operators are automatically assuming that the denser RAS layer is also rising. As a result the site will inevitably either increase the RAS pumping rate or drop the bellmouth in an attempt to bring the rising blanket back down the tank.

What has actually happened, however, is that the denser, good quality biomass has remained at the bottom of the tank and only the lighter FLOC layer has lifted.

Increasing the pumping rate or dropping the bellmouth will have little affect on the lighter FLOC layer, which has risen up the tank, but these actions will rapidly remove all the good quality biomass while pumping back a lighter density, poor quality biomass. This will subsequently increase the problem by having a negative effect on the F:M ratio* (Food to Micro-organisms Ratio).

On some sites it could take weeks to fully rectify the situation and during this time increased aeration may be required, increasing energy consumption at the plant and therefore energy costs. To optimise plant efficiency it is essential to monitor both the good quality biomass (ensuring densities of 3,000-6,000mg/l) and the FLOC level simultaneously. This allows the possibility of automatic control of RAS pumps and bellmouth valves to ensure that only good quality biomass is returned back to aeration or to the thickener for wasting while providing a means warning against process problems and a possible breach of consent at the same time.

Ultrasonic pulses

There is now a highly effective sonar system that ensures

such situations cannot occur by simultaneously monitoring both interfaces. Sonarflex’s submerged high power transducer sends ultrasonic pulses through the liquid, which are then reflected back from the different density interfaces. They are even powerful enough to penetrate densities in excess of 6,000mg/l, as well as detecting the tank floor.

These signals are processed by specialist software to provide outputs relating to both the FLOC and RAS levels within the tank. This vital information forms the basis of improved process and control, enabling the site to optimise both energy consumption and site operations.

Alarm levels can be set so that in the event of the FLOC level lifting, operators can make the necessary process changes in plenty of time to prevent the problem continuing and avert a breach of consent.

The key to this innovation’s success is the availability of a wide range of transducers with frequencies of 30k-700kHz. By comparing the theory for “through air” ultrasonics – an established technology for level measurement – it is thus possible to understand the need for multiple frequencies in sonar applications.

Measuring the level of a simple liquid in a vessel 10m deep is straightforward, and almost any high frequency (40-50kHz) transducer will give reliable and repeatable results. However, if we use this same frequency on a similar size silo containing a solid such as cement, with high airborne dust concentrations, then the results are far from successful. The transducer will inevitably struggle to penetrate more than a few metres and would be highly unstable in fill conditions because the suspended particles would attenuate the high frequency short wavelength signal.

By comparison, if a lower frequency (5-10kHz) is used with a longer wavelength, then the sound wave can pass through the suspended particles more easily. A perfect example of this is a foghorn.

In bad weather conditions visibility is poor because the air is saturated with moisture. A high frequency, short wavelength would be far less effective in this scenario as the sound would be attenuated by the moisture particles and would only travel a short distance. Foghorns use a low frequency, long wavelength to project the sound through the moisture particles miles out to sea to warn ships – the Foghorn Principle.

This same analogy remains true for sonar. While traditional designs adopt a one size fits all philosophy for sludge blanket systems (adopting a range around 600-700kHz), the optimum transducer frequency needs to be selected to ensure the best engineered solution across a treatment works.

Sonarflex uses a different frequency transducer for primary sedimentation, primary and secondary clarifiers, sludge thickeners, lamella clarifiers and sequential batch reactors (SBRs).

Cleaning mechanism

SBRs are typically installed where space or cost are at a premium. They combine the primary sedimentation tank, the aeration process and final/secondary settlement all in one tank. By nature of their principle of operation, the liquid levels change within the tanks and a traditional fixed transducer cannot cater for these changes.

To overcome this problem, a “unique” floating transducer is used that tracks the settling blanket interface as decant levels change. As a result, settling times can be monitored far more accurately and the improved batch times can increase throughput by up to 20%.

The wastewater treatment environment is harsh and standard instrumentation designs stand little chance of surviving more than a few weeks. The ultrasonic transducers – either submerged or floating – need regular cleaning to avoid unreliable performance due to signal attenuation caused by the build up of scum, scaling, air bubbles or fats.

However, mechanical cleaning systems such as wipers have a finite life and require constant maintenance, while their components can often need changing every few weeks. To overcome this, the Sonarflex uses a patented actuator lever arm system.

The automatic cleaning cycle is triggered on a time basis or by a predetermined reduction in signal level. When this occurs the actuator pushes the transducer support arm through the water to an angle of 45° and then returns it to the vertical. This sharp shearing action through the water removes any debris or scum from the front face and ensures optimum performance without the need forany operator involvement.

This attention to detail in Sonarflex’s design covers both electronic and mechanical operational features. There is also a hazardous area ATEX version, which can be used for the growing number of enclosed settling tanks built to minimise odour release to the atmosphere or to capture and reuse the methane gases.

A wide range of communication protocols including Fieldbus, Profibus, HART and DeviceNet, ensure seamless integration with modern plant instrumentation and DCSs. The transducer can be located up to 500m from the control unit and a robust wireless link option can provide communication for rotating bridge fitted units, while GSM connectivity provides instant access to all parameters for servicing, technical support and commissioning. Multiple outputs and relays can be used for alarm and control functions as well as cleaner arm actuation.

By providing both analogue and a wide range of BUS communication protocol options as outputs, Sonarflex can help to maximise the efficiency of the process. When using the analogue version, two 4-20mA outputs are available for monitoring the different densities within the tank.

Dosing control

On a primary tank the interface can be monitored using one output, while suspended solids between the transducer face and the interface can be monitored using the CLARITY output, providing an indication of how well the tank is settling. This second output can be used to optimise dosing control by dosing only when needed instead of on a traditional timed basis, reducing the amount of flocculent or coagulant used and making important cost savings.

On a secondary tank the two outputs can be used to monitor the RAS layer and the FLOC layer, providing control of the RAS pumps or bellmouth to optimise the density being returned to aeration while ensuring a consistent density is wasted to the thickener. The lighter density FLOC output can indicate process problems and provide an early warning of a possible breach of consent.

In a thickener, the two outputs can be used to monitor BED level and water CLARITY. Monitoring the BED level ensures the filter presses or the digester receive sludge of consistent density from the underflow pumps with low water content. This reduces foaming and mechanical wear and tear, making the process more efficient.

Monitoring CLARITY (suspended solids between the transducer face and the BED level) provides a control for dosing whereby the instrument provides an output indicating the concentration of suspended solids. As suspended solids increase, dosing can be increased, and as they reduce, it can be reduced, maximising the dosing process and reducing waste from over dosing.

Alternatively, if the instrument uses the comms options then the plant PLC can receive four outputs with any combination of RAS, FLOC, BED (level), CLARITY and TEMPERATURE being available.

Whether operating the instrument using the two analogue outputs or the four comms outputs, the valuable information provided can improve control through the works, provide rapid indication of process problems, prevent breaches of discharge consent, control dosing in primary tanks and thickeners, as well as reducing wear and tear on filter presses. All of the above can help overall to reduce energy consumption, maintenance and chemical costs on sites.

Until now operators have been literally operating in the dark when it comes to having reliable data on critical interface levels in a range of tanks at various parts of their process. The Sonarflex solution now gives them data they can use with confidence for the betterment of their process. Energy savings at plants where Sonarflex has been installed around the world are most impressive and we expect UK companies to see similar advantages within a relatively short period.

Nigel Allen is with Hyconrol. T: 01527 406800.

*The F:M Ratio is a fundamental control parameter for the activated sludge process. The food in the ratio is the CBOD (Carbonaceous Biochemical Oxygen Demand or Carbonaceous Biological Oxygen Demand) entering the process; the micro-organisms are the activated sludge solids in the aeration tanks, which are measured as ppm or mg/l of MLSS (mixed liquor suspended solids). To establish and maintain a consistent CBOD and secondary waste removal from raw sewage, an activated sludge process must maintain the weight of food to weight of microorganisms under aeration.

Action inspires action. Stay ahead of the curve with sustainability and energy newsletters from edie